mod alternatives and similar packages
Based on the "Math" category.
Alternatively, view mod alternatives based on common mentions on social networks and blogs.
-
vector
An efficient implementation of Int-indexed arrays (both mutable and immutable), with a powerful loop optimisation framework . -
statistics
A fast, high quality library for computing with statistics in Haskell. -
HerbiePlugin
GHC plugin that improves Haskell code's numerical stability -
hgeometry
HGeometry is a library for computing with geometric objects in Haskell. It defines basic geometric types and primitives, and it implements some geometric data structures and algorithms. The main two focusses are: (1) Strong type safety, and (2) implementations of geometric algorithms and data structures that have good asymptotic running time guarantees. -
dimensional
Dimensional library variant built on Data Kinds, Closed Type Families, TypeNats (GHC 7.8+). -
computational-algebra
General-Purpose Computer Algebra System as an EDSL in Haskell -
mwc-random
A very fast Haskell library for generating high quality pseudo-random numbers. -
numhask
A haskell numeric prelude, providing a clean structure for numbers and operations that combine them. -
poly
Fast polynomial arithmetic in Haskell (dense and sparse, univariate and multivariate, usual and Laurent) -
safe-decimal
Safe and very efficient arithmetic operations on fixed decimal point numbers -
monoid-subclasses
Subclasses of Monoid with a solid theoretical foundation and practical purposes -
eigen
Haskel binding for Eigen library. Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.
Clean code begins in your IDE with SonarLint
* Code Quality Rankings and insights are calculated and provided by Lumnify.
They vary from L1 to L5 with "L5" being the highest.
Do you think we are missing an alternative of mod or a related project?
Popular Comparisons
README
mod

Modular arithmetic, promoting moduli to the type level, with an emphasis on performance. Originally a part of arithmoi package.
> :set -XDataKinds
> 4 + 5 :: Mod 7
(2 `modulo` 7)
> 4 - 5 :: Mod 7
(6 `modulo` 7)
> 4 * 5 :: Mod 7
(6 `modulo` 7)
> 4 / 5 :: Mod 7
(5 `modulo` 7)
> 4 ^ 5 :: Mod 7
(2 `modulo` 7)
Competitors
There are other Haskell packages, employing the very same idea of moduli on the type level,
namely modular
, modular-arithmetic
and finite-field
. One can also use finite-typelits
,
which covers some elementary modular arithmetic as well.
Unfortunately, all of them fall behind
in terms of performance. Here is a brief comparison:
Discipline | mod |
modular |
modular-arithmetic |
finite-typelits |
finite-field |
---|---|---|---|---|---|
Addition | Fast | Slow | Slow | Slow | Slow |
Small (*) |
Fast | Slow | Slow | Slow | Slow |
Inversion | Fast | N/A | Slow | N/A | Slow |
Power | Fast | Slow | Slow | Slow | Slow |
Overflows | Safe | Safe | Unsafe | Safe | Safe |
Addition. All competing implementations of the modular addition involve divisions, while
mod
completely avoids this costly operation. It makes difference even for small numbers; e. g.,sum [1..10^7]
becomes 5x faster. For larger integers the speed up is even more significant, because the computational complexity of division is not linear.Small
(*)
. When a modulo fits a machine word (which is quite a common case on 64-bit architectures),mod
implements the modular multiplication as a couple of CPU instructions and neither allocates intermediate arbitrary-precision values, nor callslibgmp
at all. For computations likeproduct [1..10^7]
this gives a 3x boost to performance in comparison to other libraries.Inversion. This package relies on
libgmp
for modular inversions. Even for small arguments it is about 5x faster than the native implementation of modular inversion inmodular-arithmetic
.Power. This package relies on
libgmp
for modular exponentiation. Even for small arguments it is about 2x faster than competitors.Overflows. At first glance
modular-arithmetic
is more flexible thanmod
, because it allows to specify the underlying representation of a modular residue, e. g.,Mod Integer 100
,Mod Int 100
,Mod Word8 100
. We argue that this is a dangerous freedom, vulnerable to overflows. For instance,20 ^ 2 :: Mod Word8 100
returns44
instead of expected0
. Even less expected is that50 :: Mod Word8 300
appears to be6
(remember that type-level numbers are alwaysNatural
).
What is the difference between mod
and finite-typelits
?
mod
is specifically designed to represent modular residues
for mathematical applications (wrapping-around finite numbers) and
provides modular inversion and exponentiation.
The main focus of finite-typelits
is on non-wrapping-around finite numbers,
like indices of arrays in vector-sized
.
It features a Num
instance only for the sake of overloading numeric literals.
There is no lawful way to define Num
except modular arithmetic,
but from finite-typelits
viewpoint this is a by-product.
Citius, altius, fortius!
If you are looking for an ultimate performance
and your moduli fit into Word
,
try Data.Mod.Word
,
which is a drop-in replacement of Data.Mod
,
but offers almost twice faster addition and multiplication, and much less allocations.
Benchmarks
Here are some relative benchmarks (less is better),
which can be reproduced by running cabal bench
.
Discipline | Data.Mod.Word |
Data.Mod |
modular |
modular-arithmetic |
finite-typelits |
finite-field |
---|---|---|---|---|---|---|
Sum | 0.4x | 1x | 4.5x | 6.1x | 3.3x | 5.0x |
Product | 0.6x | 1x | 3.6x | 5.4x | 3.1x | 4.5x |
Inversion | 0.8x | 1x | N/A | 6.1x | N/A | 4.1x |
Power | 0.9x | 1x | 6.0x | 1.8x | 1.9x | 2.1x |
What's next?
This package was cut out of arithmoi
to provide a modular arithmetic
with a light dependency footprint. This goal certainly limits the scope of API
to the bare minimum. If you need more advanced tools
(the Chinese remainder theorem, cyclic groups, modular equations, etc.)
please refer to Math.NumberTheory.Moduli.